Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
Microbiol Spectr ; : e0378823, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38567974

RESUMO

The key to a curative treatment of hepatitis B virus (HBV) infection is the eradication of the intranuclear episomal covalently closed circular DNA (cccDNA), the stable persistence reservoir of HBV. Currently, established therapies can only limit HBV replication but fail to tackle the cccDNA. Thus, novel therapeutic approaches toward curative treatment are urgently needed. Recent publications indicated a strong association between the HBV core protein SUMOylation and the association with promyelocytic leukemia nuclear bodies (PML-NBs) on relaxed circular DNA to cccDNA conversion. We propose that interference with the cellular SUMOylation system and PML-NB integrity using arsenic trioxide provides a useful tool in the treatment of HBV infection. Our study showed a significant reduction in HBV-infected cells, core protein levels, HBV mRNA, and total DNA. Additionally, a reduction, albeit to a limited extent, of HBV cccDNA could be observed. Furthermore, this interference was also applied for the treatment of an established HBV infection, characterized by a stably present nuclear pool of cccDNA. Arsenic trioxide (ATO) treatment not only changed the amount of expressed HBV core protein but also induced a distinct relocalization to an extranuclear phenotype during infection. Moreover, ATO treatment resulted in the redistribution of transfected HBV core protein away from PML-NBs, a phenotype similar to that previously observed with SUMOylation-deficient HBV core. Taken together, these findings revealed the inhibition of HBV replication by ATO treatment during several steps of the viral replication cycle, including viral entry into the nucleus as well as cccDNA formation and maintenance. We propose ATO as a novel prospective treatment option for further pre-clinical and clinical studies against HBV infection. IMPORTANCE: The main challenge for the achievement of a functional cure for hepatitis B virus (HBV) is the covalently closed circular DNA (cccDNA), the highly stable persistence reservoir of HBV, which is maintained by further rounds of infection with newly generated progeny viruses or by intracellular recycling of mature nucleocapsids. Eradication of the cccDNA is considered to be the holy grail for HBV curative treatment; however, current therapeutic approaches fail to directly tackle this HBV persistence reservoir. The molecular effect of arsenic trioxide (ATO) on HBV infection, protein expression, and cccDNA formation and maintenance, however, has not been characterized and understood until now. In this study, we reveal ATO treatment as a novel and innovative therapeutic approach against HBV infections, repressing viral gene expression and replication as well as the stable cccDNA pool at low micromolar concentrations by affecting the cellular function of promyelocytic leukemia nuclear bodies.

2.
Cell Rep Med ; 5(4): 101483, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38579727

RESUMO

Immune cell phenotyping frequently detects lineage-unrelated receptors. Here, we report that surface receptors can be transferred from primary macrophages to CD4 T cells and identify the Fcγ receptor CD32 as driver and cargo of this trogocytotic transfer. Filamentous CD32+ nanoprotrusions deposit distinct plasma membrane patches onto target T cells. Transferred receptors confer cell migration and adhesion properties, and macrophage-derived membrane patches render resting CD4 T cells susceptible to infection by serving as hotspots for HIV-1 binding. Antibodies that recognize T cell epitopes enhance CD32-mediated trogocytosis. Such autoreactive anti-HIV-1 envelope antibodies can be found in the blood of HIV-1 patients and, consistently, the percentage of CD32+ CD4 T cells is increased in their blood. This CD32-mediated, antigen-independent cell communication mode transiently expands the receptor repertoire and functionality of immune cells. HIV-1 hijacks this mechanism by triggering the generation of trogocytosis-promoting autoantibodies to gain access to immune cells critical to its persistence.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Humanos , Linfócitos T CD4-Positivos , Receptores de IgG/metabolismo , Autoanticorpos/metabolismo , Trogocitose
3.
bioRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38464092

RESUMO

Human cytomegalovirus (HCMV) encodes four viral Fc-gamma receptors (vFcγRs) that counteract antibody-mediated activation in vitro , but their role in infection and pathogenesis is unknown. To examine the in vivo function of vFcγRs in animal hosts closely related to humans, we identified and characterized vFcγRs encoded by rhesus CMV (RhCMV). We demonstrate that Rh05, Rh152/151 and Rh173 represent the complete set of RhCMV vFcγRs, each displaying functional similarities to their respective HCMV orthologs with respect to antagonizing host FcγR activation in vitro . When RhCMV-naïve rhesus macaques were infected with vFcγR-deleted RhCMV, peak plasma viremia levels and anti-RhCMV antibody responses were comparable to wildtype infections. However, the duration of plasma viremia was significantly shortened in immunocompetent, but not in CD4+ T cell-depleted animals. Since vFcγRs were not required for superinfection, we conclude that vFcγRs delay control by virus-specific adaptive immune responses, particularly antibodies, during primary infection.

4.
Proc Natl Acad Sci U S A ; 121(9): e2315985121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38377192

RESUMO

Recurrent, ancient arms races between viruses and hosts have shaped both host immunological defense strategies as well as viral countermeasures. One such battle is waged by the glycoprotein US11 encoded by the persisting human cytomegalovirus. US11 mediates degradation of major histocompatibility class I (MHC-I) molecules to prevent CD8+ T-cell activation. Here, we studied the consequences of the arms race between US11 and primate MHC-A proteins, leading us to uncover a tit-for-tat coevolution and its impact on MHC-A diversification. We found that US11 spurred MHC-A adaptation to evade viral antagonism: In an ancestor of great apes, the MHC-A A2 lineage acquired a Pro184Ala mutation, which confers resistance against the ancestral US11 targeting strategy. In response, US11 deployed a unique low-complexity region (LCR), which exploits the MHC-I peptide loading complex to target the MHC-A2 peptide-binding groove. In addition, the global spread of the human HLA-A*02 allelic family prompted US11 to employ a superior LCR strategy with an optimally fitting peptide mimetic that specifically antagonizes HLA-A*02. Thus, despite cytomegaloviruses low pathogenic potential, the increasing commitment of US11 to MHC-A has significantly promoted diversification of MHC-A in hominids.


Assuntos
Antígenos de Histocompatibilidade Classe I , Hominidae , Animais , Humanos , Proteínas Virais/metabolismo , Citomegalovirus , Hominidae/genética , Hominidae/metabolismo , Linhagem Celular , Antígenos de Histocompatibilidade/metabolismo , Antígenos HLA-A/metabolismo , Peptídeos/metabolismo
5.
Euro Surveill ; 28(50)2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38099347

RESUMO

BackgroundShortly after the launch of a novel adjuvanted recombinant zoster vaccine (RZV), Shingrix, cases of suspected herpes zoster (HZ) or zoster-like skin reactions following immunisation were reported.AimWe aimed to investigate if these skin manifestations after administration of RZV could be HZ.MethodsBetween April and October 2020, general practitioners (GP) reporting a suspected case of HZ or zoster-like skin manifestation after RZV vaccination to the Paul-Ehrlich-Institut, the German national competent authority, were invited to participate in the study. The GP took a sample of the skin manifestation, photographed it and collected patient information on RZV vaccination and the suspected adverse event. We analysed all samples by PCR for varicella-zoster virus (VZV) and herpes-simplex virus (HSV) and genotyped VZV-positive samples. In addition, cases were independently assessed by two dermatologists.ResultsEighty eligible cases were enrolled and 72 could be included in the analysis. Of the 72 cases, 45 were female, 33 were 60-69 years old, 32 had skin symptoms in the thoracic and 27 in the cervical dermatomes. Twenty-seven samples tested PCR positive for VZV (all genotyped as wild-type, WT), three for HSV-1 and five for HSV-2.ConclusionIt may be difficult to distinguish HZ, without a PCR result, from other zoster-like manifestations. In this study, VZV-PCR positive dermatomal eruptions occurring in the first weeks after immunisation with RZV were due to WT VZV, which is not unexpected as HZ is a common disease against which the vaccine is unlikely to provide full protection at this time.


Assuntos
Vacina contra Herpes Zoster , Herpes Zoster , Feminino , Humanos , Pessoa de Meia-Idade , Idoso , Masculino , Vacina contra Herpes Zoster/efeitos adversos , Herpes Zoster/diagnóstico , Herpes Zoster/prevenção & controle , Herpesvirus Humano 3/genética , Vacinação/efeitos adversos , Vacinas Sintéticas , Alemanha/epidemiologia
6.
BMJ Open ; 13(11): e074461, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37918931

RESUMO

INTRODUCTION: Shingrix, an effective adjuvanted, recombinant herpes zoster vaccine (RZV), has been available since 2018. Immunocompromised patients are known to be predisposed to vaccine failure. In-vitro testing of immunological surrogates of vaccine protection could be instrumental for monitoring vaccination success. So far, no test procedure is available for vaccine responses to RZV that could be used on a routine basis. METHODS AND ANALYSIS: This is a single-centre, three-arm, parallel, longitudinal cohort study aspiring to recruit a total of 308 patients (103 with a liver cirrhosis Child A/B, 103 after liver transplantation (both ≥50 years), 102 immunocompetent patients (60-70 years)). Blood samples will be taken at seven data collection points to determine varicella zoster virus (VZV) and glycoprotein E (gE)-specific IgG and T cell responses. The primary study outcome is to measure and compare responses after vaccination with RZV depending on the type and degree of immunosuppression using gE-specific antibody detection assays. As a secondary outcome, first, the gE-specific CD4+ T cell response of the three cohorts will be compared and, second, the gE-VZV antibody levels will be compared with the severity of possible vaccination reactions. The tertiary outcome is a potential association between VZV immune responses and clinical protection against shingles. ETHICS AND DISSEMINATION: Ethical approval was issued on 07/11/2022 by the Ethics Committee Essen, Germany (number 22-10805-BO). Findings will be published in peer-reviewed open-access journals and presented at local, national and international conferences. TRIAL REGISTRATION NUMBER: German Clinical Trials Registry (number DRKS00030683).


Assuntos
Vacina contra Herpes Zoster , Herpes Zoster , Transplante de Fígado , Criança , Humanos , Estudos Longitudinais , Estudos Prospectivos , Herpes Zoster/prevenção & controle , Herpesvirus Humano 3 , Adjuvantes Imunológicos , Glicoproteínas , Adjuvantes Farmacêuticos , Cirrose Hepática/cirurgia , Vacinas de Subunidades
7.
Front Immunol ; 14: 1170300, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600801

RESUMO

Human cytomegalovirus (HCMV) is a prototypical ß-herpesvirus which frequently causes morbidity and mortality in individuals with immature, suppressed, or senescent immunity. HCMV is sensed by various pattern recognition receptors, leading to the secretion of pro-inflammatory cytokines including tumor necrosis factor alpha (TNFα). TNFα binds to two distinct trimeric receptors: TNF receptor (TNFR) 1 and TNFR2, which differ in regard to their expression profiles, affinities for soluble and membrane-bound TNFα, and down-stream signaling pathways. While both TNF receptors engage NFκB signaling, only the nearly ubiquitously expressed TNFR1 exhibits a death domain that mediates TRADD/FADD-dependent caspase activation. Under steady-state conditions, TNFR2 expression is mainly restricted to immune cells where it predominantly submits pro-survival, proliferation-stimulating, and immune-regulatory signals. Based on the observation that HCMV-infected cells show enhanced binding of TNFα, we explored the interplay between HCMV and TNFR2. As expected, uninfected fibroblasts did not show detectable levels of TNFR2 on the surface. Intriguingly, however, HCMV infection increased TNFR2 surface levels of fibroblasts. Using HCMV variants and BACmid-derived clones either harboring or lacking the ULb' region, an association between TNFR2 upregulation and the presence of the ULb' genome region became evident. Applying a comprehensive set of ULb' gene block and single gene deletion mutants, we observed that HCMV mutants in which the non-adjacent genes UL148 or UL148D had been deleted show an impaired ability to upregulate TNFR2, coinciding with an inverse regulation of TACE/ADAM17.


Assuntos
Citomegalovirus , Receptores Tipo II do Fator de Necrose Tumoral , Proteínas Virais de Fusão , Humanos , Citomegalovirus/genética , Receptores Tipo II do Fator de Necrose Tumoral/genética , Ativação Transcricional , Fator de Necrose Tumoral alfa/genética , Regulação para Cima
9.
NPJ Vaccines ; 8(1): 8, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737485

RESUMO

Human cytomegalovirus (HCMV) frequently causes congenital infections, resulting in birth defects and developmental disorders. A vaccine is needed, but unavailable. We analyzed the potential of CMV mutants, lacking their STAT2 antagonists to serve as live attenuated vaccine viruses in mice. Infections with attenuated viruses elicited strong ELISA-reactive binding IgG responses and induced neutralizing antibodies as well as antibodies stimulating cellular Fcγ receptors, including the antibody-dependent cellular cytotoxicity (ADCC)-eliciting receptors FcγRIII/CD16 and FcγRIV. Accordingly, vaccinated mice were fully protected against challenge infections. Female mice vaccinated prior to gestation transmitted CMV-specific IgG to their offspring, which protected the progeny from perinatal infections in a mouse model for congenital CMV disease. To define the role of maternal antibodies, female mice either capable or incapable of producing antibodies were vaccinated and subsequently bred to males of the opposite genotype. Challenge infections of the genotypically identical F1 generation revealed the indispensability of maternal antibodies for vaccine-induced protection against cytomegaloviruses.

10.
Vaccines (Basel) ; 11(2)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36851187

RESUMO

Acute neurologic complications from Varicella-Zoster-Virus reactivation occur in both immunocompromised and immunocompetent patients. In this report, we describe a case of a previously healthy immunocompetent boy who had received two doses of varicella vaccine at 1 and 4 years. At the age of 12 he developed acute aseptic meningitis caused by vaccine-type varicella-zoster-virus without concomitant skin eruptions. VZV-vaccine strain DNA was detected in the cerebrospinal fluid. The patient made a full recovery after receiving intravenous acyclovir therapy. This disease course documents another case of a VZV vaccine-associated meningitis without development of a rash, i.e., a form of VZV infection manifesting as "zoster sine herpete".

11.
Med Microbiol Immunol ; 212(2): 185-191, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35871171

RESUMO

Infection with the pandemic human coronavirus SARS-CoV-2 elicits a respiratory tract disease, termed Coronavirus disease 2019 (COVID-19). While a variable degree of disease-associated symptoms may emerge, severe COVID-19 is commonly associated with respiratory complications such as acute respiratory distress syndrome (ARDS), the necessity for mechanical ventilation or even extracorporeal membrane oxygenation (ECMO). Amongst others, disease outcome depends on age and pre-existing conditions like cardiovascular diseases, metabolic disorders but also age and biological sex. Intriguingly, increasing experimental and clinical evidence suggests that an exacerbated inflammatory response and in particular IgG immune complexes (ICs), significantly contribute to severe and prolonged COVID-19 disease progression. Vast amounts of deposited, unresolved ICs in tissue are capable to initiate an exaggerated Fc gamma receptor (FcγR) mediated signalling cascade which eventually results in common IC-associated organ diseases such as vasculitis, glomerulonephritis and arthritis, comorbidities that have been frequently reported for COVID-19. Moreover and independent of deposited ICs, very recent work identified soluble ICs (sIC) to be also present in the circulation of a majority of severely ill patients, where their systemic abundance correlated with disease severity. Thus, detection of circulating sICs in patients represents a potential marker for critical COVID-19 disease progression. Their detection early after clinical deterioration might become an indicator for the requirement of prompt anti-inflammatory treatment. Here, we review the role of ICs in COVID-19 progression, their possible origins and potential intervention strategies.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Humanos , SARS-CoV-2 , Complexo Antígeno-Anticorpo , Progressão da Doença
12.
Sci Immunol ; 8(79): eade2798, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36548397

RESUMO

RNA vaccines are efficient preventive measures to combat the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. High levels of neutralizing SARS-CoV-2 antibodies are an important component of vaccine-induced immunity. Shortly after the initial two mRNA vaccine doses, the immunoglobulin G (IgG) response mainly consists of the proinflammatory subclasses IgG1 and IgG3. Here, we report that several months after the second vaccination, SARS-CoV-2-specific antibodies were increasingly composed of noninflammatory IgG4, which were further boosted by a third mRNA vaccination and/or SARS-CoV-2 variant breakthrough infections. IgG4 antibodies among all spike-specific IgG antibodies rose, on average, from 0.04% shortly after the second vaccination to 19.27% late after the third vaccination. This induction of IgG4 antibodies was not observed after homologous or heterologous SARS-CoV-2 vaccination with adenoviral vectors. Single-cell sequencing and flow cytometry revealed substantial frequencies of IgG4-switched B cells within the spike-binding memory B cell population [median of 14.4%; interquartile range (IQR) of 6.7 to 18.1%] compared with the overall memory B cell repertoire (median of 1.3%; IQR of 0.9 to 2.2%) after three immunizations. This class switch was associated with a reduced capacity of the spike-specific antibodies to mediate antibody-dependent cellular phagocytosis and complement deposition. Because Fc-mediated effector functions are critical for antiviral immunity, these findings may have consequences for the choice and timing of vaccination regimens using mRNA vaccines, including future booster immunizations against SARS-CoV-2.


Assuntos
COVID-19 , Imunoglobulina G , Humanos , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , SARS-CoV-2 , Vacinação
13.
Front Immunol ; 13: 1011646, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36405723

RESUMO

Purpose: Heterozygous mutations in CTLA4 lead to an inborn error of immunity characterized by immune dysregulation and immunodeficiency, known as CTLA-4 insufficiency. Cohort studies on CTLA4 mutation carriers showed a reduced penetrance (around 70%) and variable disease expressivity, suggesting the presence of modifying factors. It is well studied that infections can trigger autoimmunity in humans, especially in combination with a genetic predisposition. Methods: To investigate whether specific infections or the presence of specific persisting pathogens are associated with disease onset or severity in CTLA-4 insufficiency, we have examined the humoral immune response in 13 CTLA4 mutation carriers, seven without clinical manifestation and six with autoimmune manifestations, but without immunoglobulin replacement therapy against cytomegalovirus (CMV), Epstein-Barr virus (EBV), herpes simplex virus 1/2 (HSV 1/2), parvovirus B19 and Toxoplasma gondii. Additionally, we have measured FcγRIII/CD16A activation by EBV-specific IgG antibodies to examine the functional capabilities of immunoglobulins produced by CTLA4 mutation carriers. Results: The seroprevalence between affected and unaffected CTLA4 mutation carriers did not differ significantly for the examined pathogens. Additionally, we show here that CTLA4 mutation carriers produce EBV-specific IgG, which are unimpaired in activating FcγRIII/CD16A. Conclusions: Our results show that the investigated pathogens are very unlikely to trigger the disease onset in CTLA-4-insufficient individuals, and their prevalence is not correlated with disease severity or expressivity.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Humanos , Antígeno CTLA-4/genética , Herpesvirus Humano 4/fisiologia , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/epidemiologia , Estudos Soroepidemiológicos , Anticorpos Antivirais , Imunoglobulina G
14.
Nat Commun ; 13(1): 5654, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36163132

RESUMO

A dysregulated immune response with high levels of SARS-CoV-2 specific IgG antibodies characterizes patients with severe or critical COVID-19. Although a robust IgG response is considered to be protective, excessive triggering of activating Fc-gamma-receptors (FcγRs) could be detrimental and cause immunopathology. Here, we document excessive FcγRIIIA/CD16A activation in patients developing severe or critical COVID-19 but not in those with mild disease. We identify two independent ligands mediating extreme FcγRIIIA/CD16A activation. Soluble circulating IgG immune complexes (sICs) are detected in about 80% of patients with severe and critical COVID-19 at levels comparable to active systemic lupus erythematosus (SLE) disease. FcγRIIIA/CD16A activation is further enhanced by afucosylation of SARS-CoV-2 specific IgG. Utilizing cell-based reporter systems we provide evidence that sICs can be formed prior to a specific humoral response against SARS-CoV-2. Our data suggest a cycle of immunopathology driven by an early formation of sICs in predisposed patients. These findings suggest a reason for the seemingly paradoxical findings of high antiviral IgG responses and systemic immune dysregulation in severe COVID-19. The involvement of circulating sICs in the promotion of immunopathology in predisposed patients opens new possibilities for intervention strategies to mitigate critical COVID-19 progression.


Assuntos
COVID-19 , Anticorpos Antivirais , Complexo Antígeno-Anticorpo , Antivirais , Humanos , Imunoglobulina G , SARS-CoV-2
15.
PLoS Pathog ; 18(9): e1010783, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36121874

RESUMO

The genome of cowpoxvirus (CPXV) could be considered prototypical for orthopoxviridae (OXPV) since it contains many open reading frames (ORFs) absent or lost in other OPXV, including vaccinia virus (VACV). These additional ORFs are non-essential for growth in vitro but are expected to contribute to the broad host range, virulence and immune evasion characteristics of CPXV. For instance, unlike VACV, CPXV encodes proteins that interfere with T cell stimulation, either directly or by preventing antigen presentation or co-stimulation. When studying the priming of naïve T cells, we discovered that CPXV, but not VACV, encodes a secreted factor that interferes with activation and proliferation of naïve CD8+ and CD4+ T cells, respectively, in response to anti-CD3 antibodies, but not to other stimuli. Deletion mapping revealed that the inhibitory protein is encoded by CPXV14, a small secreted glycoprotein belonging to the poxvirus immune evasion (PIE) family and containing a smallpoxvirus encoded chemokine receptor (SECRET) domain that mediates binding to chemokines. We demonstrate that CPXV14 inhibition of antibody-mediated T cell activation depends on the presence of Fc-gamma receptors (FcγRs) on bystander cells. In vitro, CPXV14 inhibits FcγR-activation by antigen/antibody complexes by binding to FcγRs with high affinity and immobilized CPXV14 can trigger signaling through FcγRs, particularly the inhibitory FcγRIIB. In vivo, CPXV14-deleted virus showed reduced viremia and virulence resulting in reduced weight loss and death compared to wildtype virus whereas both antibody and CD8+ T cell responses were increased in the absence of CPXV14. Furthermore, no impact of CPXV14-deletion on virulence was observed in mice lacking the inhibitory FcγRIIB. Taken together our results suggest that CPXV14 contributes to virulence and immune evasion by binding to host FcγRs.


Assuntos
Vírus da Varíola Bovina , Evasão da Resposta Imune , Animais , Vírus da Varíola Bovina/genética , Glicoproteínas , Camundongos , Receptores de Quimiocinas , Receptores de IgG , Vírus Vaccinia , Virulência
16.
Curr Protoc ; 2(9): e537, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36083111

RESUMO

This article describes procedures for infecting adult mice with murine cytomegalovirus (MCMV) and for infecting newborn mice to model congenital CMV infection. Methods are included for propagating MCMV in cell cultures and preparing a more virulent form of MCMV from the salivary glands of infected mice. A plaque assay is provided for determining MCMV titers of infected tissues or virus stocks. Also, methods are described for preparing the murine embryonic fibroblasts used for propagating MCMV, and for the plaque assay. © 2022 Wiley Periodicals LLC.


Assuntos
Infecções por Citomegalovirus , Muromegalovirus , Animais , Modelos Animais de Doenças , Camundongos , Glândulas Salivares
17.
J Clin Immunol ; 42(6): 1111-1129, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35511314

RESUMO

PURPOSE: Six to 19% of critically ill COVID-19 patients display circulating auto-antibodies against type I interferons (IFN-AABs). Here, we establish a clinically applicable strategy for early identification of IFN-AAB-positive patients for potential subsequent clinical interventions. METHODS: We analyzed sera of 430 COVID-19 patients from four hospitals for presence of IFN-AABs by ELISA. Binding specificity and neutralizing activity were evaluated via competition assay and virus-infection-based neutralization assay. We defined clinical parameters associated with IFN-AAB positivity. In a subgroup of critically ill patients, we analyzed effects of therapeutic plasma exchange (TPE) on the levels of IFN-AABs, SARS-CoV-2 antibodies and clinical outcome. RESULTS: The prevalence of neutralizing AABs to IFN-α and IFN-ω in COVID-19 patients from all cohorts was 4.2% (18/430), while being undetectable in an uninfected control cohort. Neutralizing IFN-AABs were detectable exclusively in critically affected (max. WHO score 6-8), predominantly male (83%) patients (7.6%, 18/237 for IFN-α-AABs and 4.6%, 11/237 for IFN-ω-AABs in 237 patients with critical COVID-19). IFN-AABs were present early post-symptom onset and at the peak of disease. Fever and oxygen requirement at hospital admission co-presented with neutralizing IFN-AAB positivity. IFN-AABs were associated with lower probability of survival (7.7% versus 80.9% in patients without IFN-AABs). TPE reduced levels of IFN-AABs in three of five patients and may increase survival of IFN-AAB-positive patients compared to those not undergoing TPE. CONCLUSION: IFN-AABs may serve as early biomarker for the development of severe COVID-19. We propose to implement routine screening of hospitalized COVID-19 patients for rapid identification of patients with IFN-AABs who most likely benefit from specific therapies.


Assuntos
COVID-19 , Interferon Tipo I , Anticorpos Neutralizantes , Autoanticorpos , COVID-19/diagnóstico , Estado Terminal , Feminino , Humanos , Interferon-alfa/uso terapêutico , Masculino , Oxigênio , SARS-CoV-2
18.
Rev Med Virol ; 32(5): e2342, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35366033

RESUMO

The cornerstone of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection is reverse-transcription polymerase chain reaction (RT-PCR) of viral RNA. As a surrogate assay SARS-CoV-2 RNA detection does not necessarily imply infectivity. Only virus isolation in permissive cell culture systems can indicate infectivity. Here, we review the evidence on RT-PCR performance in detecting infectious SARS-CoV-2. We searched for any studies that used RT-PCR and cell culture to determine infectious SARS-CoV-2 in respiratory samples. We assessed (i) diagnostic accuracy of RT-PCR compared to cell culture as reference test, (ii) performed meta-analysis of positive predictive values (PPV) and (iii) determined the virus isolation probabilities depending on cycle threshold (Ct) or log10 genome copies/ml using logistic regression. We included 55 studies. There is substantial statistical and clinical heterogeneity. Seven studies were included for diagnostic accuracy. Sensitivity ranged from 90% to 99% and specificity from 29% to 92%. In meta-analysis, the PPVs varied across subgroups with different sampling times after symptom onset, with 1% (95% confidence interval [CI], 0%-7%) in sampling beyond 10 days and 27% (CI, 19%-36%) to 46% (CI, 33%-60%) in subgroups that also included earlier samples. Estimates of virus isolation probability varied between 6% (CI, 0%-100%) and 50% (CI, 0%-100%) at a Ct value of 30 and between 0% (CI, 0%-22%) and 63% (CI, 0%-100%) at 5 log10 genome copies/ml. Evidence on RT-PCR performance in detecting infectious SARS-CoV-2 in respiratory samples was limited. Major limitations were heterogeneity and poor reporting. RT-PCR and cell culture protocols need further standardisation.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Teste para COVID-19 , Humanos , RNA Viral/genética , SARS-CoV-2/genética , Sensibilidade e Especificidade
19.
Nat Commun ; 13(1): 128, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013206

RESUMO

The quality and persistence of children's humoral immune response following SARS-CoV-2 infection remains largely unknown but will be crucial to guide pediatric SARS-CoV-2 vaccination programs. Here, we examine 548 children and 717 adults within 328 households with at least one member with a previous laboratory-confirmed SARS-CoV-2 infection. We assess serological response at 3-4 months and 11-12 months after infection using a bead-based multiplex immunoassay for 23 human coronavirus antigens including SARS-CoV-2 and its Variants of Concern (VOC) and endemic human coronaviruses (HCoVs), and additionally by three commercial SARS-CoV-2 antibody assays. Neutralization against wild type SARS-CoV-2 and the Delta VOC are analysed in a pseudotyped virus assay. Children, compared to adults, are five times more likely to be asymptomatic, and have higher specific antibody levels which persist longer (96.2% versus 82.9% still seropositive 11-12 months post infection). Of note, symptomatic and asymptomatic infections induce similar humoral responses in all age groups. SARS-CoV-2 infection occurs independent of HCoV serostatus. Neutralization responses of children and adults are similar, although neutralization is reduced for both against the Delta VOC. Overall, the long-term humoral immune response to SARS-CoV-2 infection in children is of longer duration than in adults even after asymptomatic infection.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Imunidade Humoral/imunologia , SARS-CoV-2/imunologia , Adolescente , Adulto , Antígenos Virais/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/imunologia , Criança , Pré-Escolar , Reações Cruzadas/imunologia , Feminino , Humanos , Lactente , Masculino , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação/métodos
20.
EMBO Mol Med ; 14(1): e14182, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34842342

RESUMO

Fc-gamma receptor (FcγR) activation by soluble IgG immune complexes (sICs) represents a major mechanism of inflammation in certain autoimmune diseases such as systemic lupus erythematosus (SLE). A robust and scalable test system allowing for the detection and quantification of sIC bioactivity is missing. We developed a comprehensive reporter cell panel detecting activation of FcγRs. The reporter cell lines were integrated into an assay that enables the quantification of sIC reactivity via ELISA or a faster detection using flow cytometry. This identified FcγRIIA(H) and FcγRIIIA as the most sIC-sensitive FcγRs in our test system. Reaching a detection limit in the very low nanomolar range, the assay proved also to be sensitive to sIC stoichiometry and size reproducing for the first time a complete Heidelberger-Kendall curve in terms of immune receptor activation. Analyzing sera from SLE patients and mouse models of lupus and arthritis proved that sIC-dependent FcγR activation has predictive capabilities regarding severity of SLE disease. The assay provides a sensitive and scalable tool to evaluate the size, amount, and bioactivity of sICs in all settings.


Assuntos
Lúpus Eritematoso Sistêmico , Receptores de IgG , Animais , Complexo Antígeno-Anticorpo/metabolismo , Citometria de Fluxo , Humanos , Inflamação , Camundongos , Receptores de IgG/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...